ALLYLISOPROPYLACETAMIDE-INDUCED PORPYRIA-PROTECTIVE EFFECT OF 3,5-DIMETHYLISOOXAZOLE

ARNALDO PINELLI and LUIGIA FAVALLI

Department of Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, and Ceramiche F. Marazzi, Sassuolo, Modena, Italy

(Received 11 September 1972; accepted 25 October 1972)

Abstract—Allylisopropylacetamide (AIA) administered to rats, increases the liver δ-aminolevulinic acid (ALA) synthetase activity and porphyrin values elevate plasma triglyceride levels and decreases plasma-free fatty acids. 3,5-Dimethylisooxazole (3,5-DMI) markedly lowers the liver ALA synthetase activity, porphyrin levels and also decreases plasma triglyceride levels in AIA-treated rats. 3,5-DMI exerts its antiporphyric activity probably by increasing the protein catabolism.

SEVERAL alterations in lipid metabolism have been reported in experimentally-induced porphyria. A significant increase of plasma lipid phosphorus and total lipids have been described in allylisopropylacetamide (AIA)-treated rabbits.¹ An elevation of plasma total lipid values have also been shown in rats made porphyric with griseofulvin.² In rats injected with AIA liver fatty acid synthesis was increased 2-fold.³

Also in human patients affected by acute intermittent porphyria some alterations of lipid metabolism have previously been described, consisting of an increase in plasma β -lipoprotein levels.⁴ These findings suggest that the alterations of lipid metabolism may be closely related to the derangement of porphyrin metabolism. If this hypothesis is correct, a drug affecting lipid metabolism could display some antiporphyric activity.

We therefore administered to AIA-treated rats, 3,5-dimethylisooxazole (3,5-DMI), a compound known to decrease the free fatty acids (FFA) release⁵ and plasma FFA levels,^{6,7} to observe whether antiporphyric activity is associated with the antilipidic effect of 3,5-dimethylisooxazole.

MATERIALS AND METHODS

Male Wistar rats, weighing 200 g, were starved for 48 hr before injecting the drugs. A group of rats were intraperitoneally injected with AIA (400 mg/kg). AIA was dissolved in a solution of water-polyethylene glycol-ethanol (60:30:10). Animals were injected with the vehicle only.

Another group of rats received intraperitoneally 3,5-dimethylisooxazole (100mg/kg). A third group of rats was injected intraperitoneally with both drugs.

Rats were sacrificed by sectioning the jugular veins.

In the first experiment the animals were killed 4 hr after AIA administration.

In the second experiment the animals were sacrificed 4 and 8 hr after AIA injection; plasma FFA,⁸ triglycerides,⁹ urea,¹⁰ blood glucose¹¹ were measured. The liver δ -aminolevulinic acid (ALA) synthetase activity was assayed,¹² the liver porphyrins extracted¹³ and measured spectrophotofluorimetrically.¹⁴

Table 1. Effects of AIA, 3,5-dimethylisooxazole and combined treatment on plasma triglyceride and FFA values

Groups	Treatment	No. animals	Triglycerides* (mg/100 ml of plasma)	Free fatty acids (µequiv./100 ml of plasma)
1	Controls	6	48.63 + 2.321	63·19 ± 6·01
2	AIA	6	64.89 ± 1.85	42.25 ± 2.47
3	3,5-Dimethylisooxazole	6	26.60 ± 3.96	36.43 ± 2.25
4	3,5-Dimethylisooxazole† + AIA	6	34.04 ± 2.26	38.53 ± 2.28
	Significance levels	Triglycer	ides	FFA
	1–2	P < 0.0		P < 0.05
	1–3	P < 0.0	Di P	P < 0·01
	1–4	P < 0.0	01 P	• < 0·01
	2–3	P < 0.0	D1 N	√. S.§
	2-4	P < 0.0	01 N	N. S.
	3–4	N. S.	N	N. S.

^{*} Triglyceride and FFA values were measured 4 hr after the AIA administration.

Table 2. Effects of AIA, 3,5-dimethylisooxazole and combined treatment on blood glucose values and plasma urea levels

Groups	Treatment	No. animals	Glucose,* (mg/100 ml of blood)	Urea,* (mg/100 ml of plasma)	
1	Controls	6	39.72 + 0.63	47.50 + 1.20	
2	AIA	6	51.47 ± 2.02	52.16 ± 1.61	
3	3,5-Dimethylisooxazole	6	34.68 ± 1.95	68.91 ± 2.41	
4	3,5-Dimethylisooxazole† +AIA	6	57.32 ± 8.86	66.58 ± 2.33	
	Significance levels	Glucose	Urea		
	1–2	P < 0.01	P < 0.05		
	1–3	P < 0.05	P < 0.01	P < 0.01	
	1–4	N. S.§	P < 0.01		
	2–3	P < 0.01	P < 0.01		
	2–4	N. S.	P < 0.01		
	3–4	P < 0.05	N. S.		

^{*} Glucose and urea values were measured 4 hr after the AIA administration.

^{† 3,5-}Dimethylisooxazole was intraperitoneally administered 40 min before the AIA injection.

[‡] Values shown are mean ± S. E. M.

[§] N. S., not significant.

^{† 3,5-}Dimethylisooxazole was intraperitoneally administered 40 min before the AIA injection.

 $[\]ddagger$ Values shown are mean \pm S. E. M.

[§] N. S., not significant.

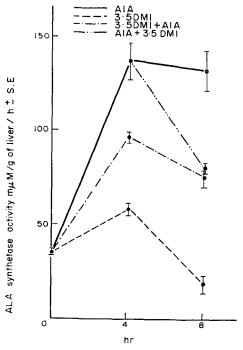


Fig. 1. Liver ALA synthetase activity in rats injected with AIA, 3,5-dimethylisooxazole and both drugs, measured 4 and 8 hr after AIA administration. 3,5-Dimethylisooxazole was administered 40 min before AIA treatment in one group of rats, and 4 hr after AIA injection in another group of animals. The values are the mean of six individual determinations \pm S. E.

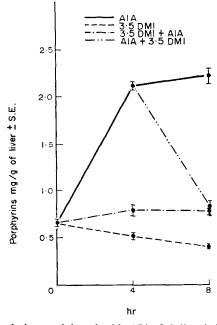


Fig. 2. Liver porphyrin levels in rats injected with AIA, 3,5-dimethylisooxazole and both drugs, measured 4 and 8 hr after AIA administration. 3,5-Dimethylisooxazole was administered 40 min before AIA treatment in one group of animals and in another group of rats it was given 4 hr after AIA injection. The values are the mean of six animals \pm S. E.

RESULTS

The results reported in Table 1 show that 3,5-dimethylisooxazole decreased triglyceride and FFA levels in normal and in AIA-injected rats; it was particularly capable of depressing the high triglyceride values induced by AIA administration.

As is shown in Table 2, 3,5-dimethylisooxazole administration does not depress the hyperglycemia observed in AIA-treated rats, while it elevates the plasma urea values in rats even if injected with AIA.

Figure 1 shows a marked elevation of ALA synthetase activity after AIA administration, and a significant lowering of this enzyme in AIA-injected rats whether 3,5-dimethylisooxazole was given before or after AIA administration.

The liver porphyrin values are highly increased in AIA-treated rats and markedly depressed in AIA-injected animals, if treated with 3,5-dimethylisooxazole, whether administered before or after AIA injection, as it is shown in Fig. 2.

DISCUSSION

Hypertriglyceridemia induced by AIA administration had been suppressed by treatment with 3,5-dimethylisooxazole, a well-known antilipemic drug.⁵⁻⁷ 3,5-Dimethylisooxazole reduces triglyceride levels by depressing FFA release from adipose tissue,^{2,5,6} but probably also affects liver fatty acid synthesis, which is increased inAIA-treated rats.³

However, it is important to observe that 3,5-dimethylisooxazole exerts not only an antilipemic, but also an antiporphyric activity in the AIA-treated rats.

The diminished ALA synthetase activity and porphyrin amount, in animals receiving 3,5-dimethylisooxazole and AIA is not due to better glucose utilization, which is known to exhibit antiporphyric activity,¹⁵ because glycemia is increased in animals receiving the combined treatment.

The antiporphyric activity of 3,5-dimethylisooxazole could be due to an action on protein breakdown.

Our results show that 3,5-dimethylisooxazole increases plasma ureogenesis in AIA-treated rats. It is known that ureogenesis is linked to increased protein breakdown and amino acid oxidation.¹⁶ Therefore, 3,5-dimethylisooxazole may also stimulate in AIA-injected rats, the oxidation of glycine and δ -aminolevulinic acid and consequently may decrease their incorporation into porphyrins.

By activating protein catabolism, 3,5-dimethylisooxazole may repress the increased RNA and protein synthesis observed in AIA-treated animals;¹⁷ particularly it may lower the messenger RNA synthesis for ALA synthetase¹⁸ and thus decrease ALA synthetase activity and porphyrin levels in animals, even if treated with a porphyrogenic drug.

REFERENCES

- 1. L. TADDEINI, K. L. NORDSTROM and C. J. WATSON, Metabolism 13, 691 (1964).
- 2. F. DE MATTEIS, Biochem. J. 98, 23c (1966).
- 3. R. F. LABBÉ, Y. HANAWA and F. I. LOTTSFELD, Archs Biochem. Biophys. 92, 393 (1961).
- 4. R. S. Lees, C. S. Song, R. D. Levere and A. Kappas, New Eng. J. Med. 282, 432 (1970).
- 5. G. C. GERRITSEN, W. E. DULIN and F. P. KUPIECKI, in *Drugs Affecting Lipid Metabolism* (Eds. W. L. HOLMES, L. A. CARLSON and R. PAOLETTI), p. 93. Plenum Press, New York (1969).
- 6. W. E. Dulin, G. H. Lund and G. C. Gerritsen, Proc. Soc. exp. Biol. Med. 118, 499 (1965).
- 7. U. Schwabe and A. Hasselblatt, Klin. Wschr. 44, 707 (1966).
- 8. V. P. Dole and H. Meinertz, J. biol. Chem. 235, 2595 (1960).

- 9. L. A. CARLSON, J. Atheroscler. Res. 3, 334 (1963).
- 10. W. H. MARSH, B. FINGERHUT and H. MILLER, Clin. Chem. 11, 524 (1965).
- 11. A. HYVARINEN and E. A. NIKKILA, Clin. Chim. Acta 7, 140 (1962).
- H. S. Marver, D. P. TSCHUDY, M. G. PEARLROTH and A. COLLINS, J. biol. Chem. 241, 2803 (1966).
- 13. S. Schwartz, M. H. Berg, I. Bossenmayer and E. Dinsmore, in *Methods of Biochemical Analysis* (Ed. D. Glick) Vol. 8, p. 221 (1960).
- 14. A. PINELLI and R. GASPARI, Clin. Chim. Acta 39, 135 (1972).
- 15. D. P. TSCHUDY, F. M. WELLAND, A. COLLINS and G. P. HUNTER, Metabolism 13, 396 (1964).
- 16. A. HASSELBLATT, U. PANTEN and W. POSER, in *Metabolic Effects of Nicotinic Acid and its Derivatives* (Eds. K. F. Gey and L. A. CARLSON), p. 1023. H. Huber, Bern (1971).
- 17. F. DE MATTEIS, S. Afr. J. Lab. Clin. Med. (Special Issue) 17, 126 (1971).
- 18. H. S. MARVER, A. COLLINS, D. P. TSCHUDY and M. RECHGIGL, J. biol. Chem. 241, 4323 (1966).